DropEdge: Towards Deep Graph Convolutional Networks on Node Classification ==== This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification ## Requirements * Python 3.6.2 * For the other packages, please refer to the requirements.txt. ## Usage To run the demo: ```sh run.sh``` All scripts of different models with parameters for Cora, Citeseer and Pubmed are in `scripts` folder. You can reproduce the results by: ``` pip install -r requirements.txt sh scripts/supervised/cora_IncepGCN.sh ``` ## Data The data format is same as [GCN](https://github.com/tkipf/gcn). We provide three benchmark datasets as examples (see `data` folder). We use the public dataset splits provided by [Planetoid](https://github.com/kimiyoung/planetoid). The semi-supervised setting strictly follows [GCN](https://github.com/tkipf/gcn), while the full-supervised setting strictly follows [FastGCN](https://github.com/matenure/FastGCN) and [ASGCN](https://github.com/huangwb/AS-GCN). ## Benchmark Results For the details of backbones in Tables, please refer to the Appendix B.2 in papers. All results are obtained on GPU (CUDA Version 9.0.176). ### Full-supervised Setting Results The following table demonstrates the testing accuracy (%) comparisons on different backbones and layers w and w/o DropEdge.
DatasetBackbone2 layers4 layers8 layers16 layers32 layers64 layers
OrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdge
CoraGCN86.1086.5085.5087.6078.7085.8082.1084.3071.6074.6052.0053.20
ResGCN--86.0087.0085.4086.9085.3086.9085.1086.8079.8084.80
JKNet--86.9087.7086.7087.8086.2088.0087.1087.6086.3087.90
IncepGCN--85.6087.9086.7088.2087.1087.7087.4087.7085.3088.20
GraphSage87.8088.1087.1088.1084.3087.1084.1084.5031.9032.2031.9031.90
CiteseerGCN75.9078.7076.7079.2074.6077.2065.2076.8059.2061.4044.6045.60
ResGCN--78.9078.8077.8078.8078.2079.4074.4077.9021.2075.30
JKNet--79.1080.2079.2080.2078.8080.1071.7080.0076.7080.00
IncepGCN--79.5079.9079.6080.5078.5080.2072.6080.3079.0079.90
GraphSage78.4080.0077.3079.2074.1077.1072.9074.5037.0053.6016.9025.10
PubmedGCN90.2091.2088.7091.3090.1090.9088.1090.3084.6086.2079.7079.00
ResGCN--90.7090.7089.6090.5089.6091.0090.2091.1087.9090.20
JKNet--90.5091.3090.6091.2089.9091.5089.2091.3090.6091.60
IncepGCN--89.9091.6090.2091.5090.8091.30OOM90.50OOM90.00
GraphSage90.1090.7089.4091.2090.2091.7083.5087.8041.3047.9040.7062.30
### Semi-supervised Setting Results The following table demonstrates the testing accuracy (%) comparisons on different backbones and layers w and w/o DropEdge.
DatasetMethod2 layers4 laysers8 layers16 layers32 layers64 layers
OrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdgeOrignalDropEdge
CoraGCN81.1082.8080.4082.0069.5075.8064.9075.7060.3062.5028.7049.50
ResGCN--78.8083.3075.6082.8072.2082.7076.6081.1061.1078.90
JKNet--80.2083.3080.7082.6080.2083.0081.1082.5071.5083.20
IncepGCN--77.6082.9076.5082.5081.7083.1081.7083.1080.0083.50
CiteseerGCN70.8072.3067.6070.6030.2061.4018.3057.2025.0041.6020.0034.40
ResGCN--70.5072.2065.0071.6066.5070.1062.6070.0022.1065.10
JKNet--68.7072.6067.7071.8069.8072.6068.2070.8063.4072.20
IncepGCN--69.3072.7068.4071.4070.2072.5068.0072.6067.5071.00
PubmedGCN79.0079.6076.5079.4061.2078.1040.9078.5022.4077.0035.3061.50
ResGCN--78.6078.8078.1078.9075.5078.0067.9078.2066.9076.90
JKNet--78.0078.7078.1078.7072.6079.1072.4079.2074.5078.90
IncepGCN--77.7079.5077.9078.6074.9079.00OOMOOMOOMOOM
## Change Log * 2019-10-11: Support both full-supervised and semi-supervised task setting for `Cora`, `Citeseer` and `Pubmed`. See `--task_type` option. ## References ``` @inproceedings{ anonymous2020dropedge, title={DropEdge: Towards Deep Graph Convolutional Networks on Node Classification}, author={Anonymous}, booktitle={Submitted to International Conference on Learning Representations}, year={2020}, url={https://openreview.net/forum?id=Hkx1qkrKPr}, note={under review} } ```