DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
====
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
## Requirements
* Python 3.6.2
* For the other packages, please refer to the requirements.txt.
## Usage
To run the demo:
```sh run.sh```
All scripts of different models with parameters for Cora, Citeseer and Pubmed are in `scripts` folder. You can reproduce the results by:
```
pip install -r requirements.txt
sh scripts/supervised/cora_IncepGCN.sh
```
## Data
The data format is same as [GCN](https://github.com/tkipf/gcn). We provide three benchmark datasets as examples (see `data` folder). We use the public dataset splits provided by [Planetoid](https://github.com/kimiyoung/planetoid). The semi-supervised setting strictly follows [GCN](https://github.com/tkipf/gcn), while the full-supervised setting strictly follows [FastGCN](https://github.com/matenure/FastGCN) and [ASGCN](https://github.com/huangwb/AS-GCN).
## Benchmark Results
For the details of backbones in Tables, please refer to the Appendix B.2 in papers. All results are obtained on GPU (CUDA Version 9.0.176).
### Full-supervised Setting Results
The following table demonstrates the testing accuracy (%) comparisons on different backbones and layers w and w/o DropEdge.
Dataset Backbone 2 layers 4 layers 8 layers 16 layers 32 layers 64 layers Orignal DropEdge Orignal DropEdge Orignal DropEdge Orignal DropEdge Orignal DropEdge Orignal DropEdge Cora GCN 86.10 86.50 85.50 87.60 78.70 85.80 82.10 84.30 71.60 74.60 52.00 53.20 ResGCN - - 86.00 87.00 85.40 86.90 85.30 86.90 85.10 86.80 79.80 84.80 JKNet - - 86.90 87.70 86.70 87.80 86.20 88.00 87.10 87.60 86.30 87.90 IncepGCN - - 85.60 87.90 86.70 88.20 87.10 87.70 87.40 87.70 85.30 88.20 GraphSage 87.80 88.10 87.10 88.10 84.30 87.10 84.10 84.50 31.90 32.20 31.90 31.90 Citeseer GCN 75.90 78.70 76.70 79.20 74.60 77.20 65.20 76.80 59.20 61.40 44.60 45.60 ResGCN - - 78.90 78.80 77.80 78.80 78.20 79.40 74.40 77.90 21.20 75.30 JKNet - - 79.10 80.20 79.20 80.20 78.80 80.10 71.70 80.00 76.70 80.00 IncepGCN - - 79.50 79.90 79.60 80.50 78.50 80.20 72.60 80.30 79.00 79.90 GraphSage 78.40 80.00 77.30 79.20 74.10 77.10 72.90 74.50 37.00 53.60 16.90 25.10 Pubmed GCN 90.20 91.20 88.70 91.30 90.10 90.90 88.10 90.30 84.60 86.20 79.70 79.00 ResGCN - - 90.70 90.70 89.60 90.50 89.60 91.00 90.20 91.10 87.90 90.20 JKNet - - 90.50 91.30 90.60 91.20 89.90 91.50 89.20 91.30 90.60 91.60 IncepGCN - - 89.90 91.60 90.20 91.50 90.80 91.30 OOM 90.50 OOM 90.00 GraphSage 90.10 90.70 89.40 91.20 90.20 91.70 83.50 87.80 41.30 47.90 40.70 62.30
Dataset | Method | 2 layers | 4 laysers | 8 layers | 16 layers | 32 layers | 64 layers | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Orignal | DropEdge | Orignal | DropEdge | Orignal | DropEdge | Orignal | DropEdge | Orignal | DropEdge | Orignal | DropEdge | ||
Cora | GCN | 81.10 | 82.80 | 80.40 | 82.00 | 69.50 | 75.80 | 64.90 | 75.70 | 60.30 | 62.50 | 28.70 | 49.50 |
ResGCN | - | - | 78.80 | 83.30 | 75.60 | 82.80 | 72.20 | 82.70 | 76.60 | 81.10 | 61.10 | 78.90 | |
JKNet | - | - | 80.20 | 83.30 | 80.70 | 82.60 | 80.20 | 83.00 | 81.10 | 82.50 | 71.50 | 83.20 | |
IncepGCN | - | - | 77.60 | 82.90 | 76.50 | 82.50 | 81.70 | 83.10 | 81.70 | 83.10 | 80.00 | 83.50 | |
Citeseer | GCN | 70.80 | 72.30 | 67.60 | 70.60 | 30.20 | 61.40 | 18.30 | 57.20 | 25.00 | 41.60 | 20.00 | 34.40 |
ResGCN | - | - | 70.50 | 72.20 | 65.00 | 71.60 | 66.50 | 70.10 | 62.60 | 70.00 | 22.10 | 65.10 | |
JKNet | - | - | 68.70 | 72.60 | 67.70 | 71.80 | 69.80 | 72.60 | 68.20 | 70.80 | 63.40 | 72.20 | |
IncepGCN | - | - | 69.30 | 72.70 | 68.40 | 71.40 | 70.20 | 72.50 | 68.00 | 72.60 | 67.50 | 71.00 | |
Pubmed | GCN | 79.00 | 79.60 | 76.50 | 79.40 | 61.20 | 78.10 | 40.90 | 78.50 | 22.40 | 77.00 | 35.30 | 61.50 |
ResGCN | - | - | 78.60 | 78.80 | 78.10 | 78.90 | 75.50 | 78.00 | 67.90 | 78.20 | 66.90 | 76.90 | |
JKNet | - | - | 78.00 | 78.70 | 78.10 | 78.70 | 72.60 | 79.10 | 72.40 | 79.20 | 74.50 | 78.90 | |
IncepGCN | - | - | 77.70 | 79.50 | 77.90 | 78.60 | 74.90 | 79.00 | OOM | OOM | OOM | OOM |