README.md 9.33 KB
Newer Older
Avishek Anand's avatar
Ad  
Avishek Anand committed
1
## Must-read papers on Interpretability and Explanations.
Jaspreet's avatar
minor  
Jaspreet committed
2 3
We must make a distinction between interpretable models and interpreting decisions made by models.

Avishek Anand's avatar
Ad  
Avishek Anand committed
4 5 6 7
We release [InterpretMe]

### Survey papers:

Avishek Anand's avatar
Avishek Anand committed
8 9
1. **Jaspreet's Master Piece**
*Jaspreet Singh* 2019. [paper](https://arxiv.org/pdf/xxx.pdf)
Avishek Anand's avatar
Ad  
Avishek Anand committed
10

11 12 13 14
1. **Interpretability of Machine Learning Models and Representations: an Introduction**
*Adrien Bibal and Benoît Frénay* 2018. [paper](https://pdfs.semanticscholar.org/4646/56fc6431f1db8b2e0b0b3093a5df1cb7958e.pdf)

1. **A Survey Of Methods For Explaining Black Box Models**
Avishek Anand's avatar
Avishek Anand committed
15
*Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, Fosca Giannotti*. 2018. [paper](https://arxiv.org/pdf/1802.01933.pdf)
16 17 18 19 20 21 22 23 24




### Theses:

1. **Learning Interpretable Models**
*Stefan R¨uping* 2006. [paper](https://eldorado.tu-dortmund.de/bitstream/2003/23008/1/dissertation_rueping.pdf)

Avishek Anand's avatar
Avishek Anand committed
25 26
2. **Explaining Rankings**
*Maartje Anne ter Hoeve*.2017.[thesis](https://pdfs.semanticscholar.org/756e/28e7fa971b2c610605ee4223ec18544aa7cf.pdf)
Avishek Anand's avatar
Ad  
Avishek Anand committed
27 28 29
### Journal and Conference papers:

1. **Towards a rigorous science of interpretable machine learning.**
Avishek Anand's avatar
Avishek Anand committed
30
*Finale Doshi-Velez and Been Kim.*  2017. [paper](https://arxiv.org/pdf/1702.08608.pdf)
Avishek Anand's avatar
Ad  
Avishek Anand committed
31

Avishek Anand's avatar
Avishek Anand committed
32
1. **Interpretable explanations of black boxes by meaningful perturbation.**
Avishek Anand's avatar
Avishek Anand committed
33
*Ruth C Fong and Andrea Vedaldi.*.CVPR 2017. [paper](https://arxiv.org/pdf/1704.03296.pdf)
Avishek Anand's avatar
Ad  
Avishek Anand committed
34

Avishek Anand's avatar
Avishek Anand committed
35
1. **A unified approach to interpreting model predictions.**
Avishek Anand's avatar
Avishek Anand committed
36
*Scott Lundberg and Su-In Lee*.2016. [paper](https://arxiv.org/pdf/1705.07874)
Avishek Anand's avatar
Avishek Anand committed
37 38
 
1. **A human-grounded evaluation benchmark for local explanations of machine learning.**
Avishek Anand's avatar
Avishek Anand committed
39
*Sina Mohseni and Eric D Ragan*.2018. [paper](https://arxiv.org/pdf/1801.05075).
Avishek Anand's avatar
Ad  
Avishek Anand committed
40

Avishek Anand's avatar
Avishek Anand committed
41
1. **Anchors: High-precision model-agnostic explanations.**
Avishek Anand's avatar
Avishek Anand committed
42
*Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin*.AAAI 2018. [paper](https://homes.cs.washington.edu/~marcotcr/aaai18.pdf)
Avishek Anand's avatar
Ad  
Avishek Anand committed
43

Avishek Anand's avatar
Avishek Anand committed
44
1. **Right for the right reasons: Training differentiable models by constraining their explanations.**
Avishek Anand's avatar
Avishek Anand committed
45
*Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez*.IJCAI 2018. [paper](https://doi.org/10.24963/ijcai.2017/371)
Avishek Anand's avatar
Avishek Anand committed
46 47 48 49 50

1. **Sharing Deep Neural Network Models with Interpretation.**
*Huijun Wu, Chen Wang, Jie Yin, Kai Lu and Liming Zhu*. WWW’18.  [paper](https://doi.org/10.24963/ijcai.2017/371)

1. **TEM:Tree-enhanced Embedding Model for Explainable Recommendation Xiang Wang.**
Avishek Anand's avatar
Avishek Anand committed
51
*Xiangnan He, Fuli Feng, Liqiang Nie and Tat-Seng Chua*. WWW’18. [paper](https://www.comp.nus.edu.sg/~xiangnan/papers/www18-tem.pdf)
Avishek Anand's avatar
Avishek Anand committed
52 53

1. **Generating Interpretable Images with Controllable Structure**
Avishek Anand's avatar
Avishek Anand committed
54
*Scott Reed, Aron van den Oord, Nal Kalchbrenner, Victor Bapst, Matt Botvinick, Nando de Freitas*. ICLR’17. [paper](http://www.scottreed.info/files/iclr2017.pdf)
Avishek Anand's avatar
Avishek Anand committed
55 56

1. **An Effective and Interpretable Method for Document Classification**
Avishek Anand's avatar
Avishek Anand committed
57
*Ngo Van Linh, Nguyen Kim Anh, Khoat Than, Chien Nguyen Dang*. KAIS 2016.[paper](http://is.hust.edu.vn/~khoattq/papers/kais-2016.pdf)
Avishek Anand's avatar
Avishek Anand committed
58

Avishek Anand's avatar
Avishek Anand committed
59 60
1. **Interpretable probabilistic embeddings: bridging the gap between topic models and neural networks.**
*Anna Potapenko, Artem Popov, and Konstantin Vorontsov*. 2017.[paper](https://arxiv.org/pdf/1711.04154.pdf)
Avishek Anand's avatar
Avishek Anand committed
61 62

1. **Interpretable Explanations of Black Boxes by Meaningful Perturbation.** 
Avishek Anand's avatar
Avishek Anand committed
63
*Fong, Ruth C and Vedaldi, Andrea*.ICCV 2017.[paper](http://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf)
Avishek Anand's avatar
Avishek Anand committed
64 65

1. **Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction.**
Avishek Anand's avatar
Avishek Anand committed
66
*Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu*. Recsys 2017.[paper](https://dl.acm.org/citation.cfm?id=3109890)
Avishek Anand's avatar
Avishek Anand committed
67 68

1. **Explicit factor models for explainable recommendation based on phrase-level sentiment analysis.**
Avishek Anand's avatar
Avishek Anand committed
69
*Yongfeng Zhang,Guokun Lai,Min Zhang,Yi Zhang,Yiqun Liu,and Shaoping Ma*. SIGIR 2014.[paper](http://yongfeng.me/attach/efm-slice-zhang.pdf)
Avishek Anand's avatar
Avishek Anand committed
70 71

1. **What your images reveal: Exploiting visual contents for point-of-interest recommendation.**
Avishek Anand's avatar
Avishek Anand committed
72
*Suhang Wang, Yilin Wang, Jiliang Tang, Kai Shu,Suhas Ranganath,and Huan Liu*. WWW 2017.[paper](http://www.public.asu.edu/~swang187/publications/VPOI.pdf)
73 74 75 76 77 78 79 80 81 82

1. **A causal framework for explaining the predictions of black-box sequence-to-sequence models**
*David Alvarez-Melis, Tommi S. Jaakkola*. ACL 2017.[paper](http://www.aclweb.org/anthology/D17-1042)

1. **Why should i trust you?: Explaining the predictions of any classifier.**
*Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin*. SIGKDD 2016.[paper](https://chara.cs.illinois.edu/sites/fa16-cs591txt/pdf/Ribeiro-2016-KDD.pdf)

1. **Understanding Black-box Predictions via Influence Functions**
*Pang Wei Koh and Percy Liang*. ICML 2017.[paper](https://arxiv.org/pdf/1703.04730.pdf)

Avishek Anand's avatar
Avishek Anand committed
83
1. **Detecting and Correcting for Label Shift with Black Box Predictors**
Avishek Anand's avatar
Avishek Anand committed
84
*Zachary C. Lipton, Yu-Xiang Wang, Alex Smola*. ICLR 2018.[paper](https://arxiv.org/pdf/1802.03916.pdf)
Avishek Anand's avatar
Avishek Anand committed
85

Avishek Anand's avatar
Avishek Anand committed
86 87 88
1. **Visually Explainable Recommendation**.
*Chen et al.*.2018.[paper](https://arxiv.org/pdf/1801.10288.pdf)

Avishek Anand's avatar
Avishek Anand committed
89 90 91
1. **How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation**
*Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, Finale Doshi-Velez*. 2018.[paper](https://arxiv.org/abs/1802.00682)

Jaspreet's avatar
Jaspreet committed
92 93 94 95 96
1. **Hierarchical Attention Networks for Document Classification**
*Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, Eduard Hovy*. 2018.[paper](http://www.aclweb.org/anthology/N16-1174) [code](https://github.com/richliao/textClassifier)



Avishek Anand's avatar
Avishek Anand committed
97
## Relevance propagation and Sensitivity Analysis
Avishek Anand's avatar
Avishek Anand committed
98

Avishek Anand's avatar
Avishek Anand committed
99
1. **On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation**
Avishek Anand's avatar
Avishek Anand committed
100 101
*S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Mu ̈ller, and W. Samek*.PLOS one 2015,[paper](http://iphome.hhi.de/samek/pdf/BacPLOS15.pdf)

Avishek Anand's avatar
Avishek Anand committed
102
1. **Explaining nonlinear classification decisions with deep taylor decomposition**
Avishek Anand's avatar
Avishek Anand committed
103
*G Montavon, S Lapuschkin, A Binder, W Samek*. Pattern Recognition 17. [paper](http://iphome.hhi.de/samek/pdf/MonPR17.pdf). [code](https://github.com/sebastian-lapuschkin/lrp_toolbox). [tutorial](http://www.heatmapping.org/tutorial/)
104

Avishek Anand's avatar
Avishek Anand committed
105 106
1. **Exploring text datasets by visualizing relevant words**
*F Horn, L Arras, G Montavon, KR Müller, W Samek*. 2017. [paper](https://arxiv.org/pdf/1707.05261.pdf)
107

Avishek Anand's avatar
Avishek Anand committed
108 109 110 111 112 113 114 115 116 117 118
1. **Methods for Interpreting and Understanding Deep Neural Networks**
*G Montavon, W Samek, KR Müller*. Digital Signal Processing, 73:1-15, 2018. [paper](https://arxiv.org/abs/1706.07979)

1. **Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models**
*W Samek, T Wiegand, KR Müller*. ITU Journal: ICT Discoveries - Special Issue 1 2017. [paper](https://arxiv.org/abs/1708.08296)

1. **"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach**
*L Arras, F Horn, G Montavon, KR Müller, W Samek*. PLOS ONE, 2017. [paper](https://arxiv.org/abs/1612.07843)

1. **Explaining NonLinear Classification Decisions with Deep Taylor Decomposition**
*G Montavon, S Lapuschkin, A Binder, W Samek, KR Müller*. Pattern Recognition, 2017. [paper](http://arxiv.org/abs/1512.02479)
Avishek Anand's avatar
Avishek Anand committed
119 120 121

1. **How to Explain Individual Classification Decisions.**
*Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Mu ̈ller KR*. Journal of Machine Learning Research. 2010.[paper](http://www.jmlr.org/papers/volume11/baehrens10a/baehrens10a.pdf)
Avishek Anand's avatar
Avishek Anand committed
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137



## Neural Rankers

1. **PACRR: A Position-Aware Neural IR Model for Relevance Matching.**
*Kai Hui, Andrew Yates, Klaus Berberich, Gerard de Melo*. EMNLP. 2016.[paper](https://arxiv.org/pdf/1704.03940.pdf)

1. **Co-PACRR: A Context-Aware Neural IR Model for Ad-hoc Retrieval.**
*Kai Hui, Andrew Yates, Klaus Berberich, Gerard de Melo.*. WSDM 2018. [paper](https://arxiv.org/pdf/1706.10192.pdf)

1. **DE-PACRR: Exploring Layers Inside the PACRR Model**
*Andrew Yates, Kai Hui*. Neu-IR 17. [paper](https://arxiv.org/pdf/1706.08746.pdf)

1. **Training deep ranking model with weak relevance labels**
*C Luo, Y Zheng, J Mao, Y Liu, M Zhang.*. ASDB 2018. [paper](http://www.thuir.cn/group/~chengluo/publications/ADC2017.pdf)
Avishek Anand's avatar
Avishek Anand committed
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

1. **DSSM : Learning Deep Structured Semantic Models for Web Search using Clickthrough Data**
*PS Huang, X He, J Gao, L Deng, A Acero, L Heck.* CIKM 2013. [paper](http://www.ifp.illinois.edu/~huang146/papers/cikm2013_DSSM_fullversion.pdf)

1. **Neural ranking models with weak supervision**
*M Dehghani, H Zamani, A Severyn, J Kamps*. SIGIR 2017. [paper](https://arxiv.org/pdf/1704.08803.pdf)

1. **A deep relevance matching model for ad-hoc retrieval**
*J Guo, Y Fan, Q Ai, WB Croft*. CIKM 2016. [paper](https://arxiv.org/pdf/1711.08611.pdf)

1. **DUET: Learning to Match Using Local and Distributed Representations of Text for Web Search**
*Bhaskar Mitra, Fernando Diaz, Nick Craswell*. WWW 2017. [paper](https://arxiv.org/pdf/1610.08136.pdf)

1. **A Study of MatchPyramid Models on Ad-hoc Retrieval**
*Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xueqi Cheng*. Neu-IR 16. [paper](Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xueqi Cheng)

1. **Match-Tensor: a Deep Relevance Model for Search**
*A Jaech, H Kamisetty, E Ringger, C Clarke*. 2017. [paper](https://arxiv.org/pdf/1701.07795.pdf)

1. **End-to-end neural ad-hoc ranking with kernel pooling**
*C Xiong, Z Dai, J Callan, Z Liu, R Power*. SIGIR 2017. [paper](https://arxiv.org/pdf/1706.06613.pdf)

1. **Neural Models for Information Retrieval**
*Bhaskar Mitra, Nick Craswell*. Survey 2017. [paper](https://arxiv.org/pdf/1705.01509.pdf)