Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
I interpretability
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Avishek Anand
  • interpretability
  • Wiki
  • Home

Home · Changes

Page history
added LMU seminar authored Dec 12, 2019 by Maximilian Idahl's avatar Maximilian Idahl
Hide whitespace changes
Inline Side-by-side
Showing with 2 additions and 1 deletion
+2 -1
  • home.md home.md +2 -1
  • No files found.
home.md
View page @ 9226e903
......@@ -25,4 +25,5 @@
## Books
|Title|Author|link|
|-----|------|----|
|Interpretable ML: A Guide for Making Black Box Models Explainable.|Molnar|[link](https://christophm.github.io/interpretable-ml-book/)|
\ No newline at end of file
|Interpretable ML: A Guide for Making Black Box Models Explainable.|Molnar|[link](https://christophm.github.io/interpretable-ml-book/)|
|Limitations of Interpretable Machine Learning Methods|LMU seminar|[link](https://compstat-lmu.github.io/iml_methods_limitations/)|
Clone repository
  • Concept based Explanations
  • Interpretability By Design
  • Limitations of Interpretability
  • Neurips 2019 Interpretability Roundup
  • On the (In)fidelity and Sensitivity of Explanations
  • Re inforcement Learning for NLP and Text
  • Tutorials and Introductory remarks
  • Visualizing and Measuring the Geometry of BERT
  • a benchmark for interpretability methods in deep neural networks
  • bam
  • explanations can be manipulated and geometry is to blame
  • Home